Article Detail

Loading...

Keywords:

Artificial intelligence
X-ray
orthodonthics
dental imaging

Abstract

This study explores the growing role of artificial intelligence (AI) in oral and dental health, specifically in the analysis of advanced imaging techniques. Traditional methods, such as Computed Tomography (CT), Cone Beam Computed Tomography (CBCT), and X-rays, require intensive, experience-based analysis by a physician, which is both time-consuming and susceptible to human error. The text reviews current AI studies that utilize panoramic and intraoral X-ray images to automate disease detection and facilitate orthodontics. It addresses the challenges of accessing patient data and highlights the diversity of approaches in this field, including various algorithms, models, and data labeling methods, such as marking quadrants or identifying specific dental conditions like decay, missing teeth, or implants. The primary goal of this review is to consolidate existing research, providing a comprehensive overview that can inspire and guide future studies in the application of AI for dental diagnostics and treatment.

References

  • Abdalla-Aslan, R., Yeshua, T., Kabla, D., Leichter, I., Nadler, C. (2020). An artificial intelligence system using machine-learning for automatic detection and classification of dental restorations in panoramic radiography. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 130(5), 593-602.
  • AbuSalim, S., Zakaria, N., Mokhtar, N., Mostafa, S. A., Abdulkadir, S. J. (2022). Data augmentation on intra-oral images using image manipulation techniques. In: Book of Proceedings. 2022 International Conference on Digital Transformation and Intelligence, ICDI, IEEE, 1-2 December 2022, Kuching, Malaysia. pp. 117-120.
  • Ali, M., Keller, C., Huang, M. (2023). Fruits Detections Using Single Shot MultiBox Detector. In: Book of Proceedings. 5th ACM International Symposium on Blockchain and Secure Critical Infrastructure, 10-14 July 2023, Melbourne, Australia. pp. 140-144.
  • Berger, M., Yang, Q., Maier, A. (2018). X-ray Imaging. In Medical Imaging Systems; Lecture Notes in Computer Science (pp. 119-145). Springer Cham.
  • Brahmi, W., Jdey, I. (2024). Automatic tooth instance segmentation and identification from panoramic X-Ray images using deep CNN. Multimedia Tools and Applications, 83(18), 55565-55585.
  • Bruno, M. A., Walker, E. A., Abujudeh, H. H. (2015). Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction. Radiographics, 35(6), 1668-1676.
  • Chowdhury, S., Kutlu, Y., Pekmezci, A. (2024). Diabetic Retinopathy Diagnosis Using Deep Learning. Journal of Artificial Intelligence with Applications. 5(1), 5-7.
  • Haghanifar, A., Majdabadi, M. M., Haghanifar, S., Choi, Y., Ko, S. B. (2023). PaXNet: Tooth segmentation and dental caries detection in panoramic X-ray using ensemble transfer learning and capsule classifier. Multimedia Tools and Applications, 82(18), 27659-27679.
  • Hcini, G., Jdey, I., Dhahri, H. (2024). Investigating deep learning for early detection and decision-making in Alzheimer’s disease: a comprehensive review. Neural Processing Letters, 56(3), 153.
  • El Joudi, N. A., Othmani, M. B., Bourzgui, F., Mahboub, O., Lazaar, M. (2022). Review of the role of artificial intelligence in dentistry: current applications and trends. Procedia Computer Science, 210, 173-180.
  • Kim, M. J., Chae, S. G., Bae, S. J., Hwang, K. G. (2024). Unsupervised few shot learning architecture for diagnosis of periodontal disease in dental panoramic radiographs. Scientific Reports, 14(1), 23237.
  • Kumar, A., Bhadauria, H. S., Singh, A. (2021). Descriptive analysis of dental X-ray images using various practical methods: a review. PeerJ Computer Science, 7, e620.
  • Ma, T., Dang, Z., Yang, Y., Yang, J., Li, J. (2024). Dental panoramic X-ray image segmentation for multi-feature coordinate position learning. Digital Health, 10, 1-19.
  • Medica, I., Ostojic, S., Pereza, N., Kastrin, A., Peterlin, B. (2009). Association between genetic polymorphisms in cytokine genes and recurrent miscarriage–a meta-analysis. Reproductive Biomedicine Online, 19(3), 406-414.
  • Nassiri, K., Akhloufi, M. A. (2025). YOLO-based panoramic dental X-ray image analysis. Neural Computing and Applications, 1-24.
  • Padalia, D., Vora, K., Sharma, D. (2022). An attention u-net for semantic segmentation of dental panoramic X-Ray images. In: Book of Proceedings. 2022 5th International Conference on Advances in Science and Technology, ICAST, IEEE, 2-3 December 2022, Mumbai, India. pp. 491-496.
  • Pauwels, R. (2021). A brief introduction to concepts and applications of artificial intelligence in dental imaging. Oral Radiology, 37(1), 153-160.
  • Revilla-Leon, M., Gómez-Polo, M., Vyas, S., Barmak, A. B., Özcan, M., Att, W., Krishnamurthy, V. R. (2022). Artificial intelligence applications in restorative dentistry: a systematic review. The Journal of Prosthetic Dentistry, 128(5), 867-875.
  • Sarker, I. H. (2021). Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Computer Science, 2(6), 1-20.
  • Scarfe, W. C., Farman, A. G. (2008). What is cone-beam CT and how does it work?. Dental Clinics of North America, 52(4), 707-730.
  • Suryani, D., Shoumi, M. N., Wakhidah, R. (2021). Object detection on dental x-ray images using deep learning method. In IOP Conference Series: Materials Science and Engineering (p. 012058). IOP Publishing.
  • Ünsal, Ü., Adem, K. (2022). Classification of caries aries level using image processing and deep learning methods on dental images. International Journal of Sivas University of Science and Technology, 2(2), 30-53.
  • Yüksel, A. E., Gültekin, S., Simsar, E., Özdemir, Åž. D., GündoÄŸar, M., Tokgöz, S. B., Hamamcı, İ. E. (2021). Dental enumeration and multiple treatment detection on panoramic X-rays using deep learning. Scientific Reports, 11(1), 12342.
  • Zdravkovic, M., Pesic, Z., Pesic, P. (2021). Tooth detection with small panoramic radiograph images datasets and Faster RCNN model. In: Book of Proceedings. ICIST 2021 - 11th International Conference on Information Society and Technology, 7-10 March 2021, Kopaonik, Serbia. pp. 1-4.
  • Zhang, Y., Ye, F., Chen, L., Xu, F., Chen, X., Wu, H., Cao, M., Li, Y., Wang, Y., Huang, X. (2023). Children’s dental panoramic radiographs dataset for caries segmentation and dental disease detection. Scientific Data, 10(1), 380.

Article Summery

ISSN : 3023-7343

Volume 2 Issue 3

Doi : 10.5281/zenodo.17220181

Submission Date: 2025-08-09

Accepted Date : 2025-09-23

Available Online : 2025-09-28

Publication Date :2025-09-30

How to Cite

Cite as :

Duruel, Ã., Kutlu, Y. (2025). Artificial Intelligence in Dental Imaging for Disease Detection and Treatment. Tethys Environmental Science, 2(3), 122-128, doi : 10.5281/zenodo.17220181